1,867 research outputs found

    Unsupervised Learning with Self-Organizing Spiking Neural Networks

    Full text link
    We present a system comprising a hybridization of self-organized map (SOM) properties with spiking neural networks (SNNs) that retain many of the features of SOMs. Networks are trained in an unsupervised manner to learn a self-organized lattice of filters via excitatory-inhibitory interactions among populations of neurons. We develop and test various inhibition strategies, such as growing with inter-neuron distance and two distinct levels of inhibition. The quality of the unsupervised learning algorithm is evaluated using examples with known labels. Several biologically-inspired classification tools are proposed and compared, including population-level confidence rating, and n-grams using spike motif algorithm. Using the optimal choice of parameters, our approach produces improvements over state-of-art spiking neural networks

    Testing the Hubble Law with the IRAS 1.2 Jy Redshift Survey

    Get PDF
    We test and reject the claim of Segal et al. (1993) that the correlation of redshifts and flux densities in a complete sample of IRAS galaxies favors a quadratic redshift-distance relation over the linear Hubble law. This is done, in effect, by treating the entire galaxy luminosity function as derived from the 60 micron 1.2 Jy IRAS redshift survey of Fisher et al. (1995) as a distance indicator; equivalently, we compare the flux density distribution of galaxies as a function of redshift with predictions under different redshift-distance cosmologies, under the assumption of a universal luminosity function. This method does not assume a uniform distribution of galaxies in space. We find that this test has rather weak discriminatory power, as argued by Petrosian (1993), and the differences between models are not as stark as one might expect a priori. Even so, we find that the Hubble law is indeed more strongly supported by the analysis than is the quadratic redshift-distance relation. We identify a bias in the the Segal et al. determination of the luminosity function, which could lead one to mistakenly favor the quadratic redshift-distance law. We also present several complementary analyses of the density field of the sample; the galaxy density field is found to be close to homogeneous on large scales if the Hubble law is assumed, while this is not the case with the quadratic redshift-distance relation.Comment: 27 pages Latex (w/figures), ApJ, in press. Uses AAS macros, postscript also available at http://www.astro.princeton.edu/~library/preprints/pop682.ps.g

    Unified formalism for higher-order non-autonomous dynamical systems

    Full text link
    This work is devoted to giving a geometric framework for describing higher-order non-autonomous mechanical systems. The starting point is to extend the Lagrangian-Hamiltonian unified formalism of Skinner and Rusk for these kinds of systems, generalizing previous developments for higher-order autonomous mechanical systems and first-order non-autonomous mechanical systems. Then, we use this unified formulation to derive the standard Lagrangian and Hamiltonian formalisms, including the Legendre-Ostrogradsky map and the Euler-Lagrange and the Hamilton equations, both for regular and singular systems. As applications of our model, two examples of regular and singular physical systems are studied.Comment: 43 pp. We have corrected and clarified the statement of Propositions 2 and 3. A remark is added after Proposition
    • …
    corecore